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Abstract The problem of controllability of quantum systems interacting with an
engineered environment, whose dynamics are described by a non-Markovian master
equation is addressed. The manipulations of the dynamics is realized with both a
laser field and a tailored non-equilibrium, and generally time-dependent, state of the
surrounding environment. Lie algebra theory is used to characterize the structures
of the reachable state sets and to prove controllability. The theoretical results are
supported by examples.

Keywords Quantum control · Controllability of non-Markovian equations ·
Lie group controllability · Controllability in a non-compact Lie group

1 Introduction

Since the first successful laboratory experiments obtained in the 1990s [1,2], the con-
trol of quantum systems using laser fields has been subject to significant developments
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([1–5] etc.). An important part of the associated theoretical work has been devoted to
the investigation of closed quantum systems with unitary dynamics. However, realistic
physical situations include circumstances where the quantum system is not isolated,
but interacting with an environment (e.g., a molecule in a solvent). For these type of
systems, also called open quantum systems, one of the main characteristics is that the
dynamics is non-unitary. Generic open systems may be difficult to control because the
environment can contain irreversible dynamics that fights against control mechanisms.
We consider in this work a particular situation when the environment can be engineered
i.e. its characteristics chosen at will. The resulting circumstance is not a general open
quantum system but a large closed system containing a small part of interest to the
experimenter. The mathematical formulation will be identical to that used to describe
an open system except that the environment is considered controllable.

For weak system-environment coupling the dynamics of the system is described by
a Markovian equation involving the reduced density matrix ρ

d

dt
ρ(t) = Lρ(t) (1)

with the generator L in Lindblad form (see [6–8]):

Lρ = −i[H, ρ] +
∑

i

γi

(
LiρL∗

i − 1

2
L∗

i Liρ − 1

2
ρLi L∗

i

)
, (2)

where the first term represents the unitary part of the system dynamics, with H the
Hamiltonian of the system. The second term describes the dissipative dynamics, also
referred as the dissipator, dependent upon the Lindblad operators Li . The time inde-
pendent coefficients γi represent coupling to the environment, functioning as the relax-
ation rates for different decay modes of the open system. In the following for any X ,
we denote by X∗ its adjoint.

For cases of strong system-environment coupling, structured and finite reservoirs,
and/or low temperatures one often encounters non-Markovian processes, implying
that the dynamics is governed by significant memory effects. A systematic approach
to non-Markovian dynamics is provided by projection operator techniques [9–11].
These techniques can lead to integro-differential equations for the reduced density
matrix, through application of the Nakajima–Zwanzig projection operator technique.
If a time-convolution free projection operator technique [12–14] is applied, one can
deduce an approximate or even exact non-Markovian, first-order differential equation
for the open system reduced density matrix ρ:

d

dt
ρ(t) = K(t)ρ(t). (3)

The non-Markovian character of this equation is reflected by the fact that its generator
K depends explicitly on time and does not have the Lindblad form above.
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If we require that the density matrix be Hermitian and its trace constant, the most
general form of the generator K(t) is given by [8,13]:

K(t)ρ = −i[H(t), ρ] +
∑

i

γi (t)

(
Ai (t)ρ A∗

i (t) − 1

2
Ai (t)

∗ Ai (t)ρ − 1

2
ρ Ai A∗

i

)
,

(4)

where the Hamiltonian H(t), the operators Ai (t) and the relaxation rates γi (t) depend
on time.

If the relaxation rates γi (t) are positive functions, the generator K(t) is in Lindblad
form for each fixed t � 0. Such processes may be called time-dependent Markovian
although the corresponding dynamical map do not lead to a quantum dynamical semi-
group [15]. However if the relaxation rates become negative in certain time intervals
(see examples of negative rates γi in [13,15]), the master equation in no longer in
Lindblad form and the generator is not completely positive. Therefore non-Markovian
character is also related to the emergence of negative rates.

Given the diversity of models that describe the quantum system-environment inter-
action, the problem manipulating them becomes difficult to address, especially since
environment is usually composed of a large number of degrees of freedom which
are difficult to control. Despite that, research on control of such systems is strongly
motivated by a large number of applications including quantum computing [16], laser
cooling, quantum reservoir engineering, management of decoherence, chemical reac-
tions and energy transfer in molecules [17].

Optimal control by a tailored non-equilibrium, and generally time-dependent, state
of the surrounding environment has been addressed in the literature (see [18] for
more details). The master equation for the system interacting with an environment,
characterized by its distribution function nk(t) is given by

d

dt
ρ(t) = −i[H, ρ(t)] +

∑

ω

γω(nk(t))

(
Aωρ A∗

ω − 1

2
A∗

ω Aωρ − 1

2
ρ A∗

ω Aω

)
, (5)

where the coefficients γω(t) � 0 determine the transitions rates between energy levels
with transition frequencies ω.

Control by lasers fields normally affects the system through Hamiltonian evolution
and transforms pure states into pure states, while control by the environment (i.e.,
control by γ (t)) affects a system through dissipative dynamics and can be used to
steer the system from a pure or a mixed state into mixed and in some cases pure states
(a familiar example is the cooling of a thermalized quantum system, which requires
coupling to a reservoir). This type of incoherent control by the environment may be
combined with coherent fields to allow for simultaneous control through both the
Hamiltonian and dissipative parts of the system dynamics.

The equation for a system that simultaneously interacts with an electromagnetic
field ε(t) and an environment described by a function γ (t) � 0 generally has the
form [18]:
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d

dt
ρ(t) = −i[H0 + Hef f + ε(t)H1, ρ(t)]

+
∑

i

γi (t)

(
Aiρ A∗

i − 1

2
A∗

i Aiρ − 1

2
ρ A∗

i Ai

)
, (6)

where H0 is the Hamiltonian describing the coherent part of the dynamics, Hef f

is the effective Hamiltonian describing the unitary part of the system-environment
interaction and H1 is the dipole moment operator describing the interaction between
the system and the field ε(t).

Although the notion of simultaneous control by both a laser and by the environ-
ment has been mentioned in the literature [18], a theoretical analysis of the con-
trollability has not been investigated yet. The goal of this paper is to propose such
an analysis in a generic situation. A fundamental question involving the system
above is whether for any pair of states ρi and ρ f , both positive semidefinite, Her-
mitian, tr(ρi ) = tr(ρ f ) > 0, a control (ε(t), γ (t)) exists such that ρ(0) = ρi

and ρ(T ) = ρ f for some T > 0. If the answer is positive the system is called
controllable. Since γ (t) may also take negative values, the present work addresses
the controllability analysis for situations when both ε(t) and γ (t) are arbitrary real
numbers. Under this hypothesis the property of complete positivity of the density
matrix is lost; moreover with dynamics being non-Markovian. Note that if phys-
ical considerations require γ (t) to have further specific properties the results of
the analysis will not apply, but a practical proposal is to impose the constraints
in the numerical simulations by penalization, leading to an optimal control frame-
work.

Thus we suppose that the system follows a first-order differential Eq. (6) for the
reduced density matrix ρ.

The generator for the above equation is time dependent and has the same form as
K(t), previously defined by Eq. (4). Our main goal is to analyze the controllability (as
defined above) of the Eq. (6).

Another motivation for this analysis is given by systems that are not controllable
in the isolated setting (γ (t) = 0); one direction on addressing controllability can
rely on the use of specially tailored environments, characterized by γ (t), applied
through the dissipative part of the dynamics. It should be noted, however, that the
assumption γ (t) ∈ R does not imply that the propagation of an arbitrary positive
matrix at time t with the help of the master Eq. (6) necessarily leads to a positive
matrix for future times. It is important to mention that although we want to intro-
duce results as close as possible to physical circumstances, the complexity of the
theoretical problems addressed in the framework of controllability of quantum sys-
tems interacting with an environment is a complex topic for which we have a partial
analysis.

The balance of the paper is as follows: in Sect. 2 we introduce the general framework,
the main notation together with a short review of Lie algebra controllability results
previously introduced in the literature. In Sect. 3 we characterize the reachable sets
and we prove two controllability results. The last section is dedicated to numerical
computations.
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2 The problem

We consider a quantum system interacting with an environment. The system is manipu-
lated by both a laser field of intensity ε(t) and a tailored non-equilibrium, and generally
time-dependent rate, γ (t) depending on the state of the surrounding environment; the
dynamics is described by Eq. (6). We suppose that the quantum dynamics takes place
in a finite dimensional space (e.g., either intrinsically so or because a suitable large
basis set approximation has been chosen). Thus, ρ(t) is a N × N complex matrix
for some integer N > 0, H0, Hef f and H1 are real N -dimensional symmetric matri-
ces (thus Hermitian), Ai is an arbitrary N -dimensional matrix and ε, γ are real time
dependent functions.

In the following, we study the controllability (see the definition above) of the
N -dimensional Eq. (6). Without loss of generality we consider throughout the paper
only the circumstance when all γi are null except γ1. This assumption is not restrictive
since the same general results can be obtained for the case when more then one γ is
non-null. Since the effective Hamiltonian Hef f is assumed to commute with H0 we
can redefine H0 to be H0 + Hef f and omit Hef f in the sequel. Therefore, under the
above hypothesis Eq. (6) becomes:

d

dt
ρ = −i[H0, ρ] − iε(t)[H1, ρ] + γ (t)

(
Aρ A∗ − 1

2
ρ A∗ A − 1

2
A∗ Aρ

)
. (7)

In the following, for simplicity, we use the notation K for the generator of the Eq. (7)

K(t)ρ = −i[H0, ρ] − iε(t)[H1, ρ] + γ (t)

(
Aρ A∗ − 1

2
ρ A∗ A − 1

2
A∗ Aρ

)
. (8)

Aspects on controllability of open quantum systems have been addressed in the liter-
ature mostly for systems (7) with γ positive and constant. The problem of kinematic
state controllability of open quantum systems whose dynamics are represented by
Kraus maps has been considered in [19].

The behavior of a Markovian master equation for a N -level quantum mechanics
system driven by a coherent control field ε(t) is analyzed [20,21]. It is shown that the
system can be accessible, but neither small-time controllable nor controllable in finite
time.

A deterministic two stage method for engineering arbitrary pure and mixed states
for quantum systems subject to the Markovian evolution is proposed in [22]. In the
first stage, the system evolves under the action of a suitable optimal incoherent control.
In the second stage, the system evolves under the action of a suitable coherent laser
control. But in that work the focus in on the control of the dissipative regime i.e. the
control by the coherent part (the laser of intensity ε(t) is already supposed complete),
while here we on the contrary want to use γ (t) to bring supplementary control in
addition to that of ε(t).

In this paper we use the Lie algebraic approach (cf. [23–25]) to analyze the con-
trollability of quantum systems those dynamics is described by Eq. (7). An advantage
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of this technique is that it also provides an explicit controllability criteria, which can
be verified using numerical computations.

As will be seen in the sequel, controllability analysis of systems defined by (7)
must deal with the loss of compactness that arises from the non-Hermitian nature of
the generator K defined by (8). Another problem is that we do not know a priori
the structure of the reachable states, identifying the Lie group remains a task to be
investigated.

2.1 Background on controllability on Lie groups

Let us consider a connected but not necessarily compact Lie group G with Lie algebra
L(G) and control system

d X

dt
(t) = X0(X (t)) +

m∑

i=1

ui (t)Xi (X (t)), (9)

where X0 and Xi are right-invariant vector fields on G. If necessary we will denote
this solution X (t; u; Y ) to indicate its dependence on time, controls and initial state
Y . Consider the set of all reachable states from Y at time t :

Rt (Y ) = {X (t; u; Y )|X (t; u; Y ) solution of (9), X (0; u; Y ) = Y }. (10)

It follows to see that

Rt (Y ) = Rt (e)Y. (11)

where we denote by e the identity of the Lie group G; thus, describing the set Rt (e)Y
allows for completely describing all the other reachable sets. When the final time is
not specified, we will use

R(Y ) = ∪t�0Rt (Y ). (12)

We take the admissible controls ui (t) to be the set of all locally bounded and
measurable functions.

Consider L to be the Lie algebra generated by X0, X1, . . . , Xm and S its corre-
sponding Lie group (Lie subgroup of G). We do not assume that S is compact.

The results proved below build on the following reformulation of a result in [26,
Thm 6.6] (to which we refer for further details):

Theorem 1 ([26]) If there exists a constant control u = (u1, . . . , um) and a sequence
of positive numbers {tn} with tn � δ > 0, for some δ, with the property that
limn→∞ X (tn, u, e) exists and belongs to S̄ (the closure is relative to S) then R(e) = S.
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3 Controllability

We define the operators H0,H1 and T as follows:

H0 : ρ −→ −i[H0, ρ]
H1 : ρ −→ −i[H1, ρ]
T : ρ −→ Aρ A∗ − 1

2
ρ A∗ A − 1

2
A∗ Aρ, (13)

and rewrite Eq. (7) as:

d

dt
ρ = H0ρ + ε(t)H1ρ + γ (t)T ρ. (14)

We introduce the sets of matrices:

�N = {Z ∈ C
N×N |Z = Z∗}, �0

N = {Z ∈ C
N×N |Z = Z∗, tr(Z) = 0}, (15)

and recall that �N (respectively �0
N ) has dimension N 2 (respectively N 2 − 1) when

seen as a vector space over R.
Note that, denoting by adx the map y �→ adx (y) = [x, y] (the adjoint representa-

tion), we also have

H0 = ad−i H0 ,H1 = ad−i H1 . (16)

Also, when A = A∗ then T = − 1
2 adA ◦ adA. A simple computation indicates that

for any Z ∈ �N : H0(Z),H1(Z), T (Z) ∈ �N . Moreover all three operators are linear.
Thus H0,H1, T ∈ Lin(�N , �N ), the space of linear operators from �N to �N (this
also results from Eq. (16)). Also note that for any matrix Z :

tr(H0 Z) = tr(−i[H0, Z ]) = 0

tr(H1 Z) = tr(−i[H1, Z ]) = 0

tr(T Z) = tr

(
AZ A∗ − 1

2
Z A∗ A − 1

2
A∗ AZ

)
= 0.

Thus we also have H0,H1, T ∈ Lin(�0
N , �0

N ). In particular the trace of ρ will not
change during the evolution. Moreover as we will see below, when A is Hermitian
another conservation law exists: if ρ(0) = λI for some λ ∈ R then ρ(t) = λI for all
t ≥ 0. This motivates the following definition:

Definition 1 The evolution (14) is density matrix controllable if for any Hermitian
matrices ρi and ρ f with tr(ρi ) = tr(ρ f ) > 0 there exists a time t ≥ 0 and
locally bounded measurable controls ε(·), γ (·) such that the solution of the evolu-
tion Eq. (7) starting at 0 from ρi reaches ρ f at time t . When A = A∗ we suppose

ρi 
= tr(ρi )
N I d, ρ f 
= tr(ρ f )

N I d.
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The standard Lie group setting for investigating the control of an isolated quantum
system works with the Lie group of unitary (or special unitary) matrices U (N ) (or
SU (N )). Here, on the contrary, we work on the group of one-to-one transformations
of �N to �N (or the same for �0

N ). As a numerical illustration of the difference, the
dimension of U (N ) as a real Lie group is N 2 while the dimension of the one-to-one
transformations from �N to itself is N 4.

We investigate controllability results in two distinct situations: when the matrix A
is Hermitian or not.

Remark 1 The particular case of A being Hermitian corresponds to unital operator
T , i.e. T I = 0, which is a situation frequently addressed in quantum information
processing.

3.1 Situation I: Hermitian operator A

Let us now consider the connected Lie group G1 of one-to-one linear transformations
of �0

N that contains the identity operator. The canonical notation of this group is
GL+(�0

N ). As we do not impose any particular structure on �0
N except that of vector

space, �0
N is isomorphic to R

N 2−1; thus the Lie group GL+(�0
N ) is isomorphic to

GL+(N 2 −1), the Lie group of invertible matrices of dimension (N 2 −1)× (N 2 −1)

with positive determinant. In particular its dimension is (N 2 − 1)2. We know that G1
is connected but not compact. We will denote by Lie(G1) the Lie algebra of G1 which
is therefore Lin(�0

N , �0
N ).

Denote by HG1
0 the element of Lie(G1) that is constructed from H0 (and the same

for H1 and T ). We associate to the evolution Eq. (14) the following evolution equation
on the group G1:

d

dt
X (t) =

(
HG1

0 + ε(t)HG1
1 + γ (t)T G1

)
X (t),

X (t = 0) = X0. (17)

We will also write X (t; ε, γ ; X0) when we will need to make explicit the dependence
on the parameters; of course X (t; ε, γ ; X0) belongs to the Lie group G1. Then by
definition ρ(t) = X (t; ε, γ ; e)ρ(0) (here e is the identity of the Lie group G1).

Theorem 2 If the Lie algebra Lie{HG1
0 ,HG1

1 , T G1} ⊂ Lie(G1) generated by

{HG1
0 ,HG1

1 , T G1} has dimension (N 2 − 1)2 (as a vector space over the real num-
bers), then the system (14) is density matrix controllable.

Proof Without loss of generality we can suppose that tr(H0) = 0 and tr(H1) = 0.
As a side remark, note that since A is Hermitian we can show by computation that

T is a Hermitian operator from �0
N to itself i.e., T ∗ = T . However H0 and H1 are

skew-Hermitian as operators from �0
N to itself.

We consider the following change of variables:

ρ̄(t) = ρ(t) − tr(ρ(0))

N
I, (18)
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which implies that ρ̄(0) ∈ �0
N . However this does not imply directly that ρ̄(t) ∈ �0

N for
all t > 0. To prove this one recalls that A is Hermitian and H0,H1, T ∈ Lin(�0

N , �0
N );

after invoking the Frobenius theorem for the equation:

˙̄ρ = −i[H, ρ̄] + T (ρ̄), (19)

one obtains that ρ̄(t) ∈ �0
N for all t ≥ 0.

From the above relations we conclude that H0(ρ), H1(ρ) and T (ρ) belong to
Lin(�0

N , �0
N ).

The central question is to characterize R(e) for the system (17). We will use Theo-

rem 1 with G = G1. Then L = Lie
{

iHG1
0 , iHG1

1 , T G1

}
is the Lie algebra generated

by HG1
0 ,HG1

1 and T G1 .
Recall that L ⊂ Lie(G1) and dimR(Lie(G1)) = dimR(Lin(�0

N , �0
N )) = (N 2 −

1)2 (dimension as vector space over R). By hypothesis dimR(L) = (N 2 − 1)2 thus
L = Lie(G1) and S = G1. Take now ε = 0, γ = 0, then Eq. (17) becomes:

d

dt
X (t) = HG1

0 X (t),

X (t = 0) = e, (20)

with solution X (t) = etHG1
0 ; take a sequence of positive numbers {tn} with tn � δ > 0

for some δ (strictly positive, arbitrary but fixed); we need to prove that

lim
n→∞ etnHG1

0 ∈ S̄. (21)

But, HG1
0 is a skew-Hermitian map, which means that etnHG1

0 belongs to the group
SO(�0

N ) of the special orthogonal transformations of �0
N ; it is known that SO(�0

N )

is the maximal compact subgroup of G1 = GL+(�0
N ).

By compactness we obtain that up to extracting a subsequence limn→∞ etnHG1
0

exists and belongs to S̄. Therefore R(e) = S. In particular X can reach any one-to-
one transformation from �0

N to itself. For any ρi and ρ f with tr(ρi ) = tr(ρi ), ρi −
tr(ρi )

N I 
= 0 and ρ f − tr(ρ f )

N I 
= 0 we can find a transformation to map the non-null

vector ρi − tr(ρi )
N I ∈ �0

N to the non-null vector ρ f − tr(ρ f )

N I = ρ f − tr(ρi )
N I ∈ �0

N
i.e., we have controllability for ρ̄ thus for ρ.

Remark 2 Following the proof of Theorem 2 we can also conclude that the set of all
density matrices reachable from ρi (with ρi 
= tr(ρi )

N I ) with dynamics described by
Eq. (14), for A being a Hermitian operator, is

(ρi + �0
N ) \

{
tr(ρi )

N
I

}
=

{
ρi + Z

∣∣∣∣Z ∈ �0
N , Z 
= tr(ρi )

N
I − ρi

}
. (22)
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3.2 Situation II: arbitrary operator A

Let us now consider the connected Lie group G2 of one-to-one linear transformations
of �N that contains the identity operator and preserves the trace:

G2 := {
X ∈ GL+(�N )

∣∣tr(X (Z)) = tr(Z), ∀Z ∈ �N
}
. (23)

By construction of �N we only have a canonical linear space structure, thus �N can
be identified with R

N 2
; and thus G2 is isomorphic with

{
X ∈ GL(N 2)

∣∣det (X) ≥ 0, tr(X (Z)) = tr(Z), ∀Z ∈ R
N 2

}
. (24)

We know that G2 is connected but not compact. We will denote by Lie(G2) the
Lie algebra of G2. Note that if d

dt ρ(t) = M(ρ(t)) then ρ(t) = exp(Mt)ρ(0). If
tr(ρ(t)) = const it implies d

dt tr(ρ(t)) = 0. Since d
dt tr(ρ(t)) = tr( d

dt ρ(t)) it follows:

tr(M(ρ(t))) = 0, ∀ ρ(t) ∈ �N . (25)

Since tr(ρ) is a linear operation and if ρ is viewed as a vector in R
N 2

then tr(ρ) =
< α, ρ > with α a vector with “1” on the positions corresponding to ρi i , i =
1, . . . , N 2 and zero elsewhere. In this case the Lie algebra is thus isomorphic with the
set (endowed with its canonical Lie algebra structure):

⎧
⎨

⎩M ∈ R
N 2×N 2 ∣∣MT α ≡ 0

RN2 i.e.
N 2∑

j=1

M jiα j = 0,∀i = 1, . . . , N 2

⎫
⎬

⎭ (26)

We have thus N 2 constraints on R
N 2×N 2

, that means the dimension over R of the Lie
algebra is (N 2 − 1)N 2.

Denote by HG2
0 the element of Lie(G2) that is constructed from H0 (and the same

for H1 and T ). We associate to the evolution Eq. (14) the following evolution equation
on the group G2:

d

dt
X (t) =

(
HG2

0 + ε(t)HG2
1 + γ (t)T G2

)
X (t),

X (t = 0) = X0. (27)

We will also write X (t; ε, γ ; X0) when we will need to make explicit the dependence
on the parameters; of course X (t; ε, γ ; X0) belongs to the Lie group G2. Then by
definition ρ(t) = X (t; ε, γ ; e)ρ(0).

Theorem 3 If the Lie algebra Lie{HG2
0 ,HG2

1 , T G2} generated by {HG2
0 ,HG2

1 , T G2}
has dimension (N 2 − 1)N 2 (as a vector space over the real numbers) then the system
(14) is density matrix controllable.

123



1558 J Math Chem (2013) 51:1548–1560

Proof Without loss of generality we can suppose that tr(H0) = 0 and tr(H1) = 0.
We did not yet prove that G2 is indeed a Lie group: this results from Cartan’s theorem
that states that any closed subgroup of a Lie group is a Lie subgroup (we include G2
in the group GL+(�N ) of one-to-one transformations on �N of positive determinant).
We will use the same line of proof as in Theorem 2 and invoke Theorem 1 (this time

without any change of variables) for G = G2. Then L = Lie
{

iHG2
0 , iHG2

1 , T G2

}
is

the Lie algebra generated by HG2
0 ,HG2

1 and T G2 .
Recall that L ⊂ Lie(G2) and dimR(Lie(G2)) = (N 2 − 1)N 2 (dimension as

vector space over R). By hypothesis dimR(L) = (N 2 − 1)N 2 thus L = Lie(G2) and
S = G2. Take now ε = 0, γ = 0, then Eq. (27) becomes:

d

dt
X (t) = HG2

0 X (t),

X (t = 0) = e, (28)

with solution X (t) = etHG2
0 ; take a sequence of positive numbers {tn} with tn � δ > 0

for some δ (strictly positive, arbitrary but fixed); we need to prove that

lim
n→∞ etnHG2

0 ∈ S̄. (29)

But HG2
0 is a skew-Hermitian map which means that etnHG2

0 belongs to the group
SO(�N ) of special orthogonal transformations of �N which is a subgroup of G2. Since

SO(�N ) is compact it implies that up to extracting a subsequence limn→∞ etnHG2
0

exists and is orthogonal. All orthogonal transformations etnHG2
0 preserve the trace

thus limn→∞ etnHG2
0 exists, is orthogonal and trace preserving and hence an element

of S̄. Therefore R(e) = S. In particular X can reach any trace preserving one-to-one
transformation from �N to itself. For any ρi and ρ f with tr(ρi ) = tr(ρi ) we can find
a trace preserving one-to-one transformation to map ρi ∈ �N to ρ f ∈ �N i.e. we have
controllability for ρ.

Remark 3 From the proof of Theorem 3 we obtain that the set of all density matrices
reachable from ρi with dynamics described by Eq. (14), for A arbitrary operator, is
the set

ρi + �0
N =

{
ρi + Z |Z ∈ �0

N

}
. (30)

It should be noted that in particular this set contains matrices that are not necessarily
positive semidefinite. This means that the control, even between two states that are
positive semidefinite may also use intermediary statesρ(t) that are not physical. Should
such a circumstance appear in practice, a numerical algorithm that penalizes, e.g. the
presence of non-physical states, may be used. The result above indicates that an initial
guess that offers perfect control but with a possible non-physical trajectory, can always
be subject to such an algorithm.
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Remark 4 A straightforward extension is to consider the circumstance when several
non-null controls γ2, . . . are present; the theoretical results can be proved in the same
manner.

Remark 5 In this paper two controllability results are proved for γ (t) ∈ R but not
necessarily positive [13]. However physical considerations may imposeγ to be positive
(see [6] for more details). Previous controllability results cannot be used due to the loss
of compactness. Therefore the controllability analysis of the system defined by (7),
for γ (t) ≥ 0, remains for now a conjecture and leads to the question: are Theorems 2
and 3 true if γ (t) takes only positive values?

4 Application

In the following we illustrate the theoretical results introduced in the above section.
For this purpose consider two finite-dimensional systems defined by

H0 =
⎛

⎝
−4 0 0
0 1 0
0 0 3

⎞

⎠, H1 =
⎛

⎝
0 −2 0

−2 0 0
0 0 0

⎞

⎠, A =
⎛

⎝
2 1 3
1 −1 0
3 0 −1

⎞

⎠, (31)

and

H0 =
⎛

⎝
−4 0 0
0 1 0
0 0 3

⎞

⎠, H1 =
⎛

⎝
0 −2 0

−2 0 0
0 0 0

⎞

⎠, A =
⎛

⎝
2 1 1
1 −1 0
3 0 −1

⎞

⎠. (32)

First note that the system defined by H0 and H1 alone (i.e., with A = 0) is not
controllable as the dimension of the Lie algebra generated by −i H0 and −i H1 is 4,
short of 32 − 1 = 8 needed for controllability. Also note that for the system defined
by (31) A is a symmetric matrix. We want to verify if systems (31) and (32) are
controllable i.e., verify the hypotheses of Theorem 2 and Theorem 3.

To do so we choose a parameterization such that we can write (14) as a linear system

d

dt
ρ̃ = −iH̃0ρ̃ − iε(t)H̃1ρ̃ + γ (t)T̃ ρ̃ (33)

Numerically H̃0, H̃1, T̃ are N 2 × N 2 dimensional matrices and ρ̃ is a N 2 × 1 vector.
For the Hamiltonian part of the dynamics this is known as the Liouville equation in
the adjoint representation.

In order to analyze the controllability we need to numerically compute the
dimension of the Lie algebra (as subalgebra of N 2 × N 2 matrices) generated by
{iH̃0, iH̃1, T̃ }, which we denote by Lie{iH̃0, iH̃1, T̃ } and verify for A a Hermitian
N -dimensional matrix if dimR(Lie{iH̃0, iH̃1, T̃ }) = (N 2 −1)2 or when A is an arbi-
trary if dimR(Lie{iH̃0, iH̃1, T̃ }) = (N 2 − 1)N 2. For the system in (31) numerical
computations give the result

dimR(Lie{iH̃0, iH̃1, T̃ }) = 64, (34)
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and for the system (32)

dimR(Lie{iH̃0, iH̃1, T̃ }) = 72. (35)

We conclude that both systems are controllable.
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